Type: \(\displaystyle A^{1}_3\) (Dynkin type computed to be: \(\displaystyle A^{1}_3\))
Simple basis: 3 vectors: (1, 1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 0, -1, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{1}_3
simple basis centralizer: 3 vectors: (0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0)
Number of k-submodules of g: 25
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{1}+\omega_{3}}+4V_{\omega_{3}}+4V_{\omega_{1}}+16V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, -1, -1, -1, 0, 0, 0)(0, -1, -1, -1, 0, 0, 0)g_{-15}-\varepsilon_{2}+\varepsilon_{5}
Module 21(0, 0, -1, -1, 0, 0, 0)(0, 0, -1, -1, 0, 0, 0)g_{-10}-\varepsilon_{3}+\varepsilon_{5}
Module 31(0, -1, -1, 0, 0, 0, 0)(0, -1, -1, 0, 0, 0, 0)g_{-9}-\varepsilon_{2}+\varepsilon_{4}
Module 41(0, 0, 0, -1, 0, 0, 0)(0, 0, 0, -1, 0, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 51(0, 0, -1, 0, 0, 0, 0)(0, 0, -1, 0, 0, 0, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 61(0, -1, 0, 0, 0, 0, 0)(0, -1, 0, 0, 0, 0, 0)g_{-2}-\varepsilon_{2}+\varepsilon_{3}
Module 74(0, -1, -1, -1, -1, 0, 0)(1, 0, 0, 0, 0, 0, 0)g_{1}
g_{-27}
g_{-24}
g_{-20}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{6}
Module 81(0, 1, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0)g_{2}\varepsilon_{2}-\varepsilon_{3}
Module 91(0, 0, 1, 0, 0, 0, 0)(0, 0, 1, 0, 0, 0, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 101(0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 114(-1, -1, -1, -1, 0, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}
g_{12}
g_{18}
g_{-19}
\varepsilon_{5}-\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{7}
\varepsilon_{5}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{5}
Module 124(0, 0, -1, -1, -1, 0, 0)(1, 1, 0, 0, 0, 0, 0)g_{8}
g_{-25}
g_{-21}
g_{-16}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{3}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{6}
Module 131(0, 1, 1, 0, 0, 0, 0)(0, 1, 1, 0, 0, 0, 0)g_{9}\varepsilon_{2}-\varepsilon_{4}
Module 141(0, 0, 1, 1, 0, 0, 0)(0, 0, 1, 1, 0, 0, 0)g_{10}\varepsilon_{3}-\varepsilon_{5}
Module 154(-1, -1, -1, 0, 0, 0, 0)(0, 0, 0, 1, 1, 0, 0)g_{11}
g_{17}
g_{22}
g_{-14}
\varepsilon_{4}-\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{7}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{4}
Module 164(0, 0, 0, -1, -1, 0, 0)(1, 1, 1, 0, 0, 0, 0)g_{14}
g_{-22}
g_{-17}
g_{-11}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{6}
Module 171(0, 1, 1, 1, 0, 0, 0)(0, 1, 1, 1, 0, 0, 0)g_{15}\varepsilon_{2}-\varepsilon_{5}
Module 184(-1, -1, 0, 0, 0, 0, 0)(0, 0, 1, 1, 1, 0, 0)g_{16}
g_{21}
g_{25}
g_{-8}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{3}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{3}
Module 194(0, 0, 0, 0, -1, 0, 0)(1, 1, 1, 1, 0, 0, 0)g_{19}
g_{-18}
g_{-12}
g_{-5}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{5}+\varepsilon_{8}
-\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{5}+\varepsilon_{6}
Module 204(-1, 0, 0, 0, 0, 0, 0)(0, 1, 1, 1, 1, 0, 0)g_{20}
g_{24}
g_{27}
g_{-1}
\varepsilon_{2}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{2}
Module 2115(-1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 0, 0)g_{23}
g_{-13}
g_{26}
g_{-6}
g_{-7}
g_{28}
-h_{6}
-h_{7}
h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1}
g_{-28}
g_{7}
g_{6}
g_{-26}
g_{13}
g_{-23}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{6}+\varepsilon_{8}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{6}+\varepsilon_{7}
-\varepsilon_{7}+\varepsilon_{8}
\varepsilon_{1}-\varepsilon_{8}
0
0
0
-\varepsilon_{1}+\varepsilon_{8}
\varepsilon_{7}-\varepsilon_{8}
\varepsilon_{6}-\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
\varepsilon_{6}-\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{6}
Module 221(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{2}0
Module 231(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{3}0
Module 241(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{4}0
Module 251(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}+2h_{6}+3h_{5}-h_{1}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 5
Heirs rejected due to not being maximally dominant: 14
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 14
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_2
Potential Dynkin type extensions: A^{1}_4, A^{1}_3+A^{1}_1,